c^2+4-(c+4)=32

Simple and best practice solution for c^2+4-(c+4)=32 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for c^2+4-(c+4)=32 equation:



c^2+4-(c+4)=32
We move all terms to the left:
c^2+4-(c+4)-(32)=0
We add all the numbers together, and all the variables
c^2-(c+4)-28=0
We get rid of parentheses
c^2-c-4-28=0
We add all the numbers together, and all the variables
c^2-1c-32=0
a = 1; b = -1; c = -32;
Δ = b2-4ac
Δ = -12-4·1·(-32)
Δ = 129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{129}}{2*1}=\frac{1-\sqrt{129}}{2} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{129}}{2*1}=\frac{1+\sqrt{129}}{2} $

See similar equations:

| X=165-20y | | 36y-35y-250+200=0 | | 2x=(5x4) | | 5^x+5^x+2=26 | | 0.5^3x-2=1 | | x-17=5x+13 | | 7x2-4x+4=0 | | (2x+5)+(2x+7)=180 | | -6/5x^2=-5 | | (2y)+(58-5)=180 | | 2(x+4)+10+2x=42 | | 6x+10-x=35 | | x/5-12=0 | | 3x2^x=93 | | 5(x+1)=7(2=x) | | 2x+11-5x=10 | | 8+7/10x=6-1/5x | | Y=(1.45)^(t/2) | | 54-32=25+x | | g(-2)=-5(-2)-3 | | t+3.1=52.5 | | x(0.25)=17.1 | | 38=7k+8(k+4) | | 144+c2=169 | | (1/8)x-(1/5)=19 | | 24x+1600=35x+1204 | | -0.7d+-9.7=0.7 | | 2(3n-2)+9=-5 | | 5-3x=2x+4 | | 3x+15=175. | | 5/4+7=7/8b+19 | | 2(y-5)=3y+7 |

Equations solver categories